Copied to
clipboard

?

G = C42.119D10order 320 = 26·5

119th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.119D10, C10.1072+ (1+4), (C4×D4)⋊27D5, (D4×C20)⋊29C2, (C4×D20)⋊35C2, C207D413C2, C4⋊C4.289D10, (C2×D4).226D10, C20.6Q817C2, Dic5⋊D428C2, Dic54D448C2, C20.293(C4○D4), (C4×C20).162C22, (C2×C20).588C23, (C2×C10).109C24, C22⋊C4.121D10, C22.2(C4○D20), (C22×C4).216D10, D10.12D411C2, C2.20(D48D10), C4.119(D42D5), (D4×C10).310C22, (C2×D20).223C22, C4⋊Dic5.398C22, (C22×C20).84C22, (C2×Dic5).49C23, (C22×D5).43C23, C23.106(C22×D5), C22.134(C23×D5), C23.21D1010C2, (C22×C10).179C23, C55(C22.47C24), (C4×Dic5).228C22, C10.D4.67C22, C23.D5.109C22, D10⋊C4.144C22, (C22×Dic5).101C22, C4⋊C4⋊D59C2, (C2×C4⋊Dic5)⋊26C2, C10.51(C2×C4○D4), C2.58(C2×C4○D20), C2.25(C2×D42D5), (C2×C4×D5).256C22, (C2×C10).19(C4○D4), (C5×C4⋊C4).337C22, (C2×C4).165(C22×D5), (C2×C5⋊D4).21C22, (C5×C22⋊C4).131C22, SmallGroup(320,1237)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.119D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.119D10
C5C2×C10 — C42.119D10

Subgroups: 838 in 238 conjugacy classes, 99 normal (51 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×10], C22, C22 [×2], C22 [×11], C5, C2×C4 [×5], C2×C4 [×14], D4 [×10], C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×3], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×9], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×D4 [×5], Dic5 [×6], C20 [×2], C20 [×4], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×5], C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4 [×3], C4⋊D4 [×4], C22.D4 [×2], C42.C2, C422C2 [×2], C4×D5 [×2], D20 [×2], C2×Dic5 [×6], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×5], C2×C20 [×4], C5×D4 [×2], C22×D5 [×2], C22×C10 [×2], C22.47C24, C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5 [×3], C4⋊Dic5 [×2], D10⋊C4 [×6], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×C4×D5 [×2], C2×D20, C22×Dic5 [×2], C2×C5⋊D4 [×4], C22×C20 [×2], D4×C10, C20.6Q8, C4×D20, Dic54D4 [×2], D10.12D4 [×2], C4⋊C4⋊D5 [×2], C2×C4⋊Dic5, C23.21D10, C207D4 [×2], Dic5⋊D4 [×2], D4×C20, C42.119D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.47C24, C4○D20 [×2], D42D5 [×2], C23×D5, C2×C4○D20, C2×D42D5, D48D10, C42.119D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, bc=cb, dbd-1=b-1, dcd-1=a2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 110 63 116)(2 144 64 82)(3 102 65 118)(4 146 66 84)(5 104 67 120)(6 148 68 86)(7 106 69 112)(8 150 70 88)(9 108 61 114)(10 142 62 90)(11 41 95 129)(12 159 96 135)(13 43 97 121)(14 151 98 137)(15 45 99 123)(16 153 100 139)(17 47 91 125)(18 155 92 131)(19 49 93 127)(20 157 94 133)(21 158 78 134)(22 42 79 130)(23 160 80 136)(24 44 71 122)(25 152 72 138)(26 46 73 124)(27 154 74 140)(28 48 75 126)(29 156 76 132)(30 50 77 128)(31 117 60 101)(32 83 51 145)(33 119 52 103)(34 85 53 147)(35 111 54 105)(36 87 55 149)(37 113 56 107)(38 89 57 141)(39 115 58 109)(40 81 59 143)
(1 100 40 26)(2 91 31 27)(3 92 32 28)(4 93 33 29)(5 94 34 30)(6 95 35 21)(7 96 36 22)(8 97 37 23)(9 98 38 24)(10 99 39 25)(11 54 78 68)(12 55 79 69)(13 56 80 70)(14 57 71 61)(15 58 72 62)(16 59 73 63)(17 60 74 64)(18 51 75 65)(19 52 76 66)(20 53 77 67)(41 105 134 86)(42 106 135 87)(43 107 136 88)(44 108 137 89)(45 109 138 90)(46 110 139 81)(47 101 140 82)(48 102 131 83)(49 103 132 84)(50 104 133 85)(111 158 148 129)(112 159 149 130)(113 160 150 121)(114 151 141 122)(115 152 142 123)(116 153 143 124)(117 154 144 125)(118 155 145 126)(119 156 146 127)(120 157 147 128)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 63 62)(2 61 64 9)(3 8 65 70)(4 69 66 7)(5 6 67 68)(11 30 95 77)(12 76 96 29)(13 28 97 75)(14 74 98 27)(15 26 99 73)(16 72 100 25)(17 24 91 71)(18 80 92 23)(19 22 93 79)(20 78 94 21)(31 57 60 38)(32 37 51 56)(33 55 52 36)(34 35 53 54)(39 59 58 40)(41 157 129 133)(42 132 130 156)(43 155 121 131)(44 140 122 154)(45 153 123 139)(46 138 124 152)(47 151 125 137)(48 136 126 160)(49 159 127 135)(50 134 128 158)(81 90 143 142)(82 141 144 89)(83 88 145 150)(84 149 146 87)(85 86 147 148)(101 114 117 108)(102 107 118 113)(103 112 119 106)(104 105 120 111)(109 116 115 110)

G:=sub<Sym(160)| (1,110,63,116)(2,144,64,82)(3,102,65,118)(4,146,66,84)(5,104,67,120)(6,148,68,86)(7,106,69,112)(8,150,70,88)(9,108,61,114)(10,142,62,90)(11,41,95,129)(12,159,96,135)(13,43,97,121)(14,151,98,137)(15,45,99,123)(16,153,100,139)(17,47,91,125)(18,155,92,131)(19,49,93,127)(20,157,94,133)(21,158,78,134)(22,42,79,130)(23,160,80,136)(24,44,71,122)(25,152,72,138)(26,46,73,124)(27,154,74,140)(28,48,75,126)(29,156,76,132)(30,50,77,128)(31,117,60,101)(32,83,51,145)(33,119,52,103)(34,85,53,147)(35,111,54,105)(36,87,55,149)(37,113,56,107)(38,89,57,141)(39,115,58,109)(40,81,59,143), (1,100,40,26)(2,91,31,27)(3,92,32,28)(4,93,33,29)(5,94,34,30)(6,95,35,21)(7,96,36,22)(8,97,37,23)(9,98,38,24)(10,99,39,25)(11,54,78,68)(12,55,79,69)(13,56,80,70)(14,57,71,61)(15,58,72,62)(16,59,73,63)(17,60,74,64)(18,51,75,65)(19,52,76,66)(20,53,77,67)(41,105,134,86)(42,106,135,87)(43,107,136,88)(44,108,137,89)(45,109,138,90)(46,110,139,81)(47,101,140,82)(48,102,131,83)(49,103,132,84)(50,104,133,85)(111,158,148,129)(112,159,149,130)(113,160,150,121)(114,151,141,122)(115,152,142,123)(116,153,143,124)(117,154,144,125)(118,155,145,126)(119,156,146,127)(120,157,147,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,30,95,77)(12,76,96,29)(13,28,97,75)(14,74,98,27)(15,26,99,73)(16,72,100,25)(17,24,91,71)(18,80,92,23)(19,22,93,79)(20,78,94,21)(31,57,60,38)(32,37,51,56)(33,55,52,36)(34,35,53,54)(39,59,58,40)(41,157,129,133)(42,132,130,156)(43,155,121,131)(44,140,122,154)(45,153,123,139)(46,138,124,152)(47,151,125,137)(48,136,126,160)(49,159,127,135)(50,134,128,158)(81,90,143,142)(82,141,144,89)(83,88,145,150)(84,149,146,87)(85,86,147,148)(101,114,117,108)(102,107,118,113)(103,112,119,106)(104,105,120,111)(109,116,115,110)>;

G:=Group( (1,110,63,116)(2,144,64,82)(3,102,65,118)(4,146,66,84)(5,104,67,120)(6,148,68,86)(7,106,69,112)(8,150,70,88)(9,108,61,114)(10,142,62,90)(11,41,95,129)(12,159,96,135)(13,43,97,121)(14,151,98,137)(15,45,99,123)(16,153,100,139)(17,47,91,125)(18,155,92,131)(19,49,93,127)(20,157,94,133)(21,158,78,134)(22,42,79,130)(23,160,80,136)(24,44,71,122)(25,152,72,138)(26,46,73,124)(27,154,74,140)(28,48,75,126)(29,156,76,132)(30,50,77,128)(31,117,60,101)(32,83,51,145)(33,119,52,103)(34,85,53,147)(35,111,54,105)(36,87,55,149)(37,113,56,107)(38,89,57,141)(39,115,58,109)(40,81,59,143), (1,100,40,26)(2,91,31,27)(3,92,32,28)(4,93,33,29)(5,94,34,30)(6,95,35,21)(7,96,36,22)(8,97,37,23)(9,98,38,24)(10,99,39,25)(11,54,78,68)(12,55,79,69)(13,56,80,70)(14,57,71,61)(15,58,72,62)(16,59,73,63)(17,60,74,64)(18,51,75,65)(19,52,76,66)(20,53,77,67)(41,105,134,86)(42,106,135,87)(43,107,136,88)(44,108,137,89)(45,109,138,90)(46,110,139,81)(47,101,140,82)(48,102,131,83)(49,103,132,84)(50,104,133,85)(111,158,148,129)(112,159,149,130)(113,160,150,121)(114,151,141,122)(115,152,142,123)(116,153,143,124)(117,154,144,125)(118,155,145,126)(119,156,146,127)(120,157,147,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,30,95,77)(12,76,96,29)(13,28,97,75)(14,74,98,27)(15,26,99,73)(16,72,100,25)(17,24,91,71)(18,80,92,23)(19,22,93,79)(20,78,94,21)(31,57,60,38)(32,37,51,56)(33,55,52,36)(34,35,53,54)(39,59,58,40)(41,157,129,133)(42,132,130,156)(43,155,121,131)(44,140,122,154)(45,153,123,139)(46,138,124,152)(47,151,125,137)(48,136,126,160)(49,159,127,135)(50,134,128,158)(81,90,143,142)(82,141,144,89)(83,88,145,150)(84,149,146,87)(85,86,147,148)(101,114,117,108)(102,107,118,113)(103,112,119,106)(104,105,120,111)(109,116,115,110) );

G=PermutationGroup([(1,110,63,116),(2,144,64,82),(3,102,65,118),(4,146,66,84),(5,104,67,120),(6,148,68,86),(7,106,69,112),(8,150,70,88),(9,108,61,114),(10,142,62,90),(11,41,95,129),(12,159,96,135),(13,43,97,121),(14,151,98,137),(15,45,99,123),(16,153,100,139),(17,47,91,125),(18,155,92,131),(19,49,93,127),(20,157,94,133),(21,158,78,134),(22,42,79,130),(23,160,80,136),(24,44,71,122),(25,152,72,138),(26,46,73,124),(27,154,74,140),(28,48,75,126),(29,156,76,132),(30,50,77,128),(31,117,60,101),(32,83,51,145),(33,119,52,103),(34,85,53,147),(35,111,54,105),(36,87,55,149),(37,113,56,107),(38,89,57,141),(39,115,58,109),(40,81,59,143)], [(1,100,40,26),(2,91,31,27),(3,92,32,28),(4,93,33,29),(5,94,34,30),(6,95,35,21),(7,96,36,22),(8,97,37,23),(9,98,38,24),(10,99,39,25),(11,54,78,68),(12,55,79,69),(13,56,80,70),(14,57,71,61),(15,58,72,62),(16,59,73,63),(17,60,74,64),(18,51,75,65),(19,52,76,66),(20,53,77,67),(41,105,134,86),(42,106,135,87),(43,107,136,88),(44,108,137,89),(45,109,138,90),(46,110,139,81),(47,101,140,82),(48,102,131,83),(49,103,132,84),(50,104,133,85),(111,158,148,129),(112,159,149,130),(113,160,150,121),(114,151,141,122),(115,152,142,123),(116,153,143,124),(117,154,144,125),(118,155,145,126),(119,156,146,127),(120,157,147,128)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,63,62),(2,61,64,9),(3,8,65,70),(4,69,66,7),(5,6,67,68),(11,30,95,77),(12,76,96,29),(13,28,97,75),(14,74,98,27),(15,26,99,73),(16,72,100,25),(17,24,91,71),(18,80,92,23),(19,22,93,79),(20,78,94,21),(31,57,60,38),(32,37,51,56),(33,55,52,36),(34,35,53,54),(39,59,58,40),(41,157,129,133),(42,132,130,156),(43,155,121,131),(44,140,122,154),(45,153,123,139),(46,138,124,152),(47,151,125,137),(48,136,126,160),(49,159,127,135),(50,134,128,158),(81,90,143,142),(82,141,144,89),(83,88,145,150),(84,149,146,87),(85,86,147,148),(101,114,117,108),(102,107,118,113),(103,112,119,106),(104,105,120,111),(109,116,115,110)])

Matrix representation G ⊆ GL4(𝔽41) generated by

9000
0900
0090
00032
,
392800
13200
0010
0001
,
212000
211800
0001
0010
,
212000
232000
00040
0010
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,9,0,0,0,0,32],[39,13,0,0,28,2,0,0,0,0,1,0,0,0,0,1],[21,21,0,0,20,18,0,0,0,0,0,1,0,0,1,0],[21,23,0,0,20,20,0,0,0,0,0,1,0,0,40,0] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10F10G···10N20A···20H20I···20X
order1222222224···444444444445510···1010···1020···2020···20
size111122420202···2441010101020202020222···24···42···24···4

65 irreducible representations

dim11111111111222222222444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D10D10C4○D202+ (1+4)D42D5D48D10
kernelC42.119D10C20.6Q8C4×D20Dic54D4D10.12D4C4⋊C4⋊D5C2×C4⋊Dic5C23.21D10C207D4Dic5⋊D4D4×C20C4×D4C20C2×C10C42C22⋊C4C4⋊C4C22×C4C2×D4C22C10C4C2
# reps111222112212442424216144

In GAP, Magma, Sage, TeX

C_4^2._{119}D_{10}
% in TeX

G:=Group("C4^2.119D10");
// GroupNames label

G:=SmallGroup(320,1237);
// by ID

G=gap.SmallGroup(320,1237);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽